Search results for "CB2 receptor"

showing 3 items of 3 documents

Palmitoylethanolamide Promotes a Proresolving Macrophage Phenotype and Attenuates Atherosclerotic Plaque Formation

2018

Objective— Palmitoylethanolamide is an endogenous fatty acid mediator that is synthetized from membrane phospholipids by N -acyl phosphatidylethanolamine phospholipase D. Its biological actions are primarily mediated by PPAR-α (peroxisome proliferator-activated receptors α) and the orphan receptor GPR55. Palmitoylethanolamide exerts potent anti-inflammatory actions but its physiological role and promise as a therapeutic agent in chronic arterial inflammation, such as atherosclerosis remain unexplored. Approach and Results— First, the polarization of mouse primary macrophages towards a proinflammatory phenotype was found to reduce N -acyl phosphatidylethanolamine phospholipase D expression …

0301 basic medicineCannabinoid receptorTime FactorsMice Knockout ApoECHOLESTEROL TRANSPORTAnti-Inflammatory AgentsPhospholipaseProto-Oncogene Maschemistry.chemical_compoundCannabinoid receptor type 2Receptors CannabinoidAortachemistry.chemical_classificationMARROW-DERIVED CELLSAPOPTOTIC CELL ACCUMULATIONPlaque AtheroscleroticCell biologymacrophagesDENSITY-LIPOPROTEIN RECEPTORPhenotypeREDUCES INFLAMMATIONCB2 RECEPTOREthanolaminesFemaleCardiology and Cardiovascular MedicineSCAVENGER RECEPTORAortic DiseasesPalmitic Acidsta3111fatty acidsCell Line03 medical and health sciencesMediatorPhagocytosisPhospholipase DAnimalsHumansScavenger receptorCANNABINOID RECEPTORPhosphatidylethanolaminePalmitoylethanolamidec-Mer Tyrosine KinaseFatty acidcholesterolta3121AmidesRatsMice Inbred C57BLDisease Models Animal030104 developmental biologychemistryinflammationRECEPTOR CLASS-BatherosclerosisCONTACT ALLERGIC DERMATITISArteriosclerosis Thrombosis and Vascular Biology
researchProduct

Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the a…

2015

Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of his…

:Phenomena and Processes::Physiological Phenomena::Physiological Processes::Growth and Development::Morphogenesis::Embryonic and Fetal Development::Organogenesis::Neurogenesis [Medical Subject Headings]CB1 receptorTubulina (proteína)Cannabinoid receptorCarbamatosEtanol:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Nuclear Proteins::Histones [Medical Subject Headings]Ventrículos lateralesSacarosaNeuronasSubgranular zone0302 clinical medicine:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Membrane Proteins::Receptors Cell Surface::Receptors G-Protein-Coupled::Receptors Cannabinoid::Receptor Cannabinoid CB1 [Medical Subject Headings]Histonas:Chemicals and Drugs::Organic Chemicals::Carboxylic Acids::Acids Acyclic::Carbamates [Medical Subject Headings]Receptor cannabinoide CB1Cannabinoid receptor type 2:Organisms::Eukaryota::Animals [Medical Subject Headings]:Phenomena and Processes::Metabolic Phenomena::Metabolism::Phosphorylation [Medical Subject Headings]:Anatomy::Cells::Stem Cells::Neural Stem Cells [Medical Subject Headings]:Anatomy::Nervous System::Neurons [Medical Subject Headings]health care economics and organizations:Anatomy::Nervous System::Central Nervous System::Brain::Cerebral Ventricles::Lateral Ventricles [Medical Subject Headings]Original Research:Chemicals and Drugs::Nucleic Acids Nucleotides and Nucleosides::Nucleosides::Deoxyribonucleosides::Deoxyuridine::Bromodeoxyuridine [Medical Subject Headings]0303 health sciencesAlcoholismoalcoholConsumo de alcoholNeurogenesis:Phenomena and Processes::Genetic Phenomena::Phenotype::Genetic Markers [Medical Subject Headings]:Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Molecular Mechanisms of Pharmacological Action::Neurotransmitter Agents::Cannabinoid Receptor Modulators::Cannabinoid Receptor Agonists [Medical Subject Headings]Benzamidas:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Membrane Proteins::Receptors Cell Surface::Receptors G-Protein-Coupled::Receptors Cannabinoid::Receptor Cannabinoid CB2 [Medical Subject Headings]Endocannabinoid system3. Good healthbromodesoxiuridinaneurogenesisEndocannabinoidesmedicine.anatomical_structure:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Hydrolases [Medical Subject Headings]ACEADietaAlcoholFosforilaciónAgonistmedicine.medical_specialtyHidrolasasmedicine.drug_classNeurogenesiseducation:Psychiatry and Psychology::Mental Disorders::Substance-Related Disorders::Alcohol-Related Disorders::Alcoholism [Medical Subject Headings]Subventricular zoneBiology:Phenomena and Processes::Physiological Phenomena::Nutritional Physiological Phenomena::Diet [Medical Subject Headings]:Anatomy::Nervous System::Central Nervous System::Brain::Prosencephalon::Telencephalon::Cerebrum::Cerebral Cortex::Hippocampus::Dentate Gyrus [Medical Subject Headings]lcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceRatasInternal medicine:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Nerve Tissue Proteins::Tubulin [Medical Subject Headings]JWH133medicineGiro dentadolcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biologyCélulas madre nerviosas:Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Molecular Mechanisms of Pharmacological Action::Neurotransmitter Agents::Endocannabinoids [Medical Subject Headings]Dentate gyrusmarcadores genéticosCB2 receptor:Chemicals and Drugs::Carbohydrates::Polysaccharides::Oligosaccharides::Disaccharides::Sucrose [Medical Subject Headings]:Anatomy::Nervous System::Central Nervous System::Brain::Prosencephalon::Diencephalon::Hypothalamus [Medical Subject Headings]:Chemicals and Drugs::Organic Chemicals::Alcohols::Ethanol [Medical Subject Headings]Endocrinology:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Rats [Medical Subject Headings]nervous system:Psychiatry and Psychology::Behavior and Behavior Mechanisms::Behavior::Drinking Behavior::Alcohol Drinking [Medical Subject Headings]:Chemicals and Drugs::Organic Chemicals::Amides::Benzamides [Medical Subject Headings]030217 neurology & neurosurgeryHipotálamoNeuroscience
researchProduct

Involvement of CB1 and CB2 receptors in the modulation of cholinergic neurotransmission in mouse gastric preparations.

2007

Abstract While most of the studies concerning the role of cannabinoids on gastric motility have focused the attention on the gastric emptying in in vivo animal models, there is little information about the cannabinoid peripheral influence in the stomach. In addition, the functional features of CB2 receptors in the gastrointestinal tract have been poorly characterized. The purpose of the present study was to investigate the effects of cannabinoid drugs on the excitatory cholinergic and inhibitory non-adrenergic non-cholinergic (NANC) neurotransmission in mouse isolated gastric preparations. Intraluminal pressure from isolated whole stomach was recorded and mechanical responses induced by ele…

MaleCB1 receptorCannabinoid receptorIndolesmedicine.medical_treatmentGastric motilityReceptors PresynapticSettore BIO/09 - FisiologiaSynaptic TransmissionReceptor Cannabinoid CB2MicePiperidinesReceptor Cannabinoid CB1Cannabinoid receptor type 2StomachCholinergic Fiberslipids (amino acids peptides and proteins)Rimonabantmedicine.drugAgonistmedicine.medical_specialtyCarbacholmedicine.drug_classPolyunsaturated AlkamidesMorpholinesNeuromuscular JunctionArachidonic AcidsBiologyIn Vitro TechniquesNaphthalenesInternal medicineCannabinoid Receptor ModulatorsmedicineAnimalsCannabinoidPharmacologyEnteric neurotransmissionGastric emptyingCannabinoidsExcitatory Postsynaptic PotentialsCB2 receptorElectric StimulationBenzoxazinesMice Inbred C57BLEndocrinologyInhibitory Postsynaptic PotentialsCholinergicPyrazolesCannabinoidGastrointestinal MotilityGastric motilityEndocannabinoidsPharmacological research
researchProduct